Optimization with Partial Differential Equations
نویسندگان
چکیده
We present a model hierarchy multilevel optimisation approach to solve an optimal boundary control problem in glass manufacturing. The process is modelled by radiative heat transfer and formulated as an optimal control problem restricted by partial differential algebraic equations (PDAE) and additional control constraints. We consider a sequence of model approximations given by space-time dependent non-linear PDAEs of ascending accuracy. The different models allow for a model hierarchy based optimisation approach, where the models are shifted automatically as the optimisation proceeds. We present a realisation of a multilevel generalised SQP method within the fully space-time adaptive optimisation environment Kardos using linearly implicit methods of Rosenbrock type and multilevel finite elements. We apply the optimal control algorithm to a glass cooling problem and present numerical experiments for the model hierarchy based approach in two spatial dimensions and for a fully space-time adaptive optimisation in three spatial dimensions.
منابع مشابه
Simulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کاملOn The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method
In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...
متن کاملPartial Differential Equations applied to Medical Image Segmentation
This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...
متن کاملGlobal Optimization of Stacking Sequence in a Laminated Cylindrical Shell Using Differential Quadrature Method
Based on 3-D elasticity approach, differential quadrature method (DQM) in axial direction is adopted along with Globalized Nelder–Mead (GNM) algorithm to optimize the stacking sequence of a laminated cylindrical shell. The anisotropic cylindrical shell has finite length with simply supported boundary conditions. The elasticity approach, combining the state space method and DQM is used to obtain...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملComputational technique of linear partial differential equations by reduced differential transform method
This paper presents a class of theoretical and iterative method for linear partial differential equations. An algorithm and analytical solution with a initial condition is obtained using the reduced differential transform method. In this technique, the solution is calculated in the form of a series with easily computable components. There test modeling problems from mathematical mechanic, physi...
متن کامل